FOX RIVER CONNECTIVITY & HABITAT STUDY **ILLINOIS RIVER BASIN RESTORATION SECTION 519**

NEPA Public Meetings

18-20 September 2023

Chicago District U.S. Army Corps of Engineers

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.'

llinois Department of Natural Resources GROUP

FOX

RIVER

STUDY

CHICAGO DISTRICT

- Covers portions of 3 states (WI, IL, IN)
- 31,500 square miles
- Key Civil Works Missions:
 - Flood Risk Management
 - Navigation
 - Aquatic Ecosystem Restoration
 - Regulatory

Illinois River Basin Restoration Program Overview

Authority: Section 519, Water Resources Development Act (WRDA) of 2000, as amended:

- Development of a Comprehensive Plan
 Completed 2007 --> see right
- Construction of Critical Restoration Projects (CRP)
 o Fox River identified as a CRP
- Cost shared 65% fed /35% non-fed

 IDNR & FRSG are non-Federal cost sharing sponsors for the Fox River study

ILLINOIS RIVER BASIN RESTORATION COMPREHENSIVE PLAN WITH INTEGRATED ENVIRONMENTAL ASSESSMENT

https://www.mvr.usace.army.mil/Missions/Environmental-Stewardship/Illinois-River-Basin-Restoration/Documents-and-Reports/

Illinois River Basin Restoration Program Significance of the Illinois River

 WRDA 1986 recognized the Illinois River as a Nationally Significant Ecosystem

- Identified nationally as a river with large restoration potential by the National Research Council
- One of the Nation's busiest inland waterways linking the Great Lakes to the Gulf of Mexico – year around traffic

 Utilized by 40% of all North American waterfowl

- 81% of waterfowl in the Mississippi flyway utilized the Illinois River system
- Utilized by 326 bird species, 115 fish species, 35 mussel species

Illinois River Basin Restoration Program Program Goals

- Reducing sedimentation
- Restoring side channels and backwaters
- Increasing fish passage

- Restoring floodplain, riparian, and aquatic habitat and function
- Naturalizing hydrology and water levels
- Improving water & sediment quality

STUDY OVERVIEW

Basin – Mississippi / Illinois River Watershed – Fox River Watershed Type – Agricultural / Urban **State** – Illinois **Counties** – McHenry, Kane Municipalities - Algonquin, Carpentersville, Elgin, South Elgin, St. Charles, Geneva, Batavia, North Aurora, Aurora, Montgomery Study Area Target - Algonquin to Montgomery Dams **River Miles** – 52.1

U.S. ARMY

Tentatively Selected Plan: Alternative 2 - Remove All Study Area Dams Except Algonquin Dam

U.S. ARMY

Habitat Units Gained – 298 NAAHUs River Miles Habitat Restored – 21 miles River Miles Reconnected – 34 miles Preliminary Construction Cost – \$14,135,000 4 Accounts – Net Positive Effects Anticipated Feature Type – Natural Sustainability – Fully/No O&M

Recommended Plan may include removal of a <u>subset</u> of study area dams based on results of public & agency review and dam owner concurrence

FOX RIVER STUDY AREA DAMS

Dam	Owner	River Mile	Length (ft)	Height (ft)	Crest Elevation (ft NGVD)	Original Function	Current Function	
Stratton*	State of Illinois	98.9	275	7.0	736.8	Navigation	Recreation	
Algonquin	State of Illinois	82.6	308	10.5	730.3	Recreation	Recreation	
Carpentersville	Kane County	78.2	378	9.0	720.7	Milldam/ Hydropower	Recreation	
Kimball Street	City of Elgin	71.9	325	13.0	708.4	Milldam	Recreation/ Drinking Water	
South Elgin	State of Illinois	68.2	357	8.3	700.0	Milldam	Recreation	
St. Charles	State of Illinois	60.6	294	10.3	684.6	Recreation/ Hydropower	Recreation	
Geneva	State of Illinois	58.7	441	13.0	675.4	Milldam	Recreation	
Batavia	City of Batavia	56.3	244	12.0	665.1	Milldam	Recreation	
North Aurora	State of Illinois	52.6	375	9.0	646.0	Milldam	Recreation	
Aurora East	City of Aurora	100	E 177	11.0	628.4	Milldom	Decreation	
Aurora West	State of Illinois	40.9	W 170	15.0	628.4	IVIIIUaIII	Recreation	
Montgomery	State of Illinois	46.8	325	8.0	614.0	Navigation	Recreation	
Yorkville*	State of Illinois	36.5	530	7.0	575.0	Recreation	Recreation	
Dayton*	North American Hydro	5.7	600	29.6	498.8	Hydropower	Hydropower	

FOX RIVER STUDY AREA DAMS

EXISTING PHYSICAL CONDITIONS

Riverine System

- > Agricultural & urban watershed
- Wetland draining & filling
- Infrastructure intrusion
- Fragmentation

Upstream of Dams

- Lake conditions, or lentic
- Poor physical substrate quality
- Poor water quality

Downstream of Dams

River conditions, or lotic
High substrate quality
Improved water quality

SEDIMENT CHARACTERISTICS

- Impounded bedload of cobble, gravel and sand, and to a lesser extent silt
- Fine layer of silt within impoundments but transports as wash load
- 32 core and 52 surface samples were analyzed for metals, pesticides, etc.
- Sediment pollution is low; within residential remedial standards and near background levels

EXISTING BIOLOGICAL COMMUNITIES - UPSTREAM

Impoundment or Man-Made Lake

> Open Water

U.S. ARMY

- Fringe Marsh (sparse)
- Aquatic Bed
- Large Woody Debris
- Common Carp, Bluegill, Golden Shiner, LM Bass
- Waterfowl (ducks & geese)
- Waterbirds (herons & kingfisher)
- > Turtles

EXISTING BIOLOGICAL COMMUNITIES - DOWNSTREAM

- **Riverine Small River / Large Stream**
- Bedrock
- Riffle / Run / Pool / Glide
 - Substrates scoured within ~500 ft downstream of dam
 - Diverse substrates >500 ft to next pool
- Large Woody Debris
- Stonecat, Slenderhead Darter, River Redhorse
- Waterbirds (herons & kingfisher)
- Freshwater Mussels

PROBLEMS & OPPORTUNITIES

Riverine Fragmentation

Prevents fish/mussel migration during all flows
 Limits tributary accessibility in some reaches

Altered Riverine Process

> Alters hydraulics, creating lentic (lake) conditions

- > Alters sediment transport by trapping cobble, gravel and sand
- > Lost ability to sort, clean, and remove embeddedness
- Scours habitat and substrates ~500-feet below dam
- Promotes unsustainable wetlands within impoundment
- Lost ability to absorb flood pulses

Riparian Plant Communities Water Quality Degradation Human Safety

Aesthetics

STUDY OBJECTIVES

Objective 1 – Reestablish Fluvialgeomorphic Processes to Support Riverine Habitat

Existing run-of-the-river dams alter riverine conditions limiting natural recovery. Improvement is measured via the predicted increase in quality of riverine habitat (FWP HSI (QHEI)).

Objective 2 – Reestablish Connectivity for Riverine Animal Assemblages

Currently 70% of the river is impounded by run-of-the-river dams blocking passage for riverine organisms. Improvement is measured via the predicted increase in distribution in species richness.

STUDY CONSTRAINTS & PLANNING CONSIDERATIONS **U.S. ARMY**

Constraints

> Avoid flooding impacts to offsite landowners and public roads

Planning Considerations

- > Avoid adverse effects to existing mussel beds in free-flowing segments of the river
- > Avoid construction disturbance during spawning season of endangered & rare fishes
- > Minimize adverse short-term effects to water quality
- > Minimize adverse effects to human recreational uses of the river
- > Avoid and minimize adverse effects to municipal infrastructure such as water intake structures, transportation, reclamation facilities, utilities, etc.

FUTURE WITHOUT PROJECT CONDITIONS

- DS FF Downstream free-flowing
- US IMP Upstream impoundment

MEASURES CONSIDERED

U.S. ARMY

Dam Removal Demolition

- Full Removal of dam, spill way, aprons
- Partial Removal; notching if necessary
- **By-Pass Channel**
- Excavation/grading
- Rock placement
- Rock Ramp
- Rock placement
 Fish Ladders
- Metal, concrete or combination

MEASURE SCREENING

	1	2	3	4	5	6	7	8
Measure	Obj #1 Habitat	Obj #2 Connectivity	Const. Cost	O&M Activity	O&M Cost	WQ	Safety	Retained
Rock Ramp	No	Partial	High	High	High	No	Yes	No
Fish Ladder	No	Partial	Low	High	High	No	No	No
Bypass Channel	No	Partial	High	High	High	No	No	No
Full Removal	Yes	Yes	Mid	Low	Low	Yes	Yes	Yes
Partial Removal	Yes	Yes	Mid	Low	Med	Yes	Yes	No

MEASURE PLANNING LEVEL COSTS

U.S. ARMY

Code	Measure	Т	otal Measure	Habitat Units	Length*
CD	Carpentersville Dam	\$	1,351,000	18	51
KD	Kimball St. Dam	\$	1,423,000	47	131
ED	South Elgin Dam	\$	1,366,000	62	116
SD	St. Charles Dam	\$	1,293,000	43	142
GD	Geneva Dam	\$	1,469,000	13	33
BD	Batavia Dam	\$	1,450,000	42	131
ND	North Aurora Dam	\$	1,291,000	41	102
AD	Aurora Dam(s)	\$	1,917,000	10	40
MD	Montgomery Dam	\$	1,282,000	22	73
	Total	\$	14,135,000		*Derived Length Units
				-	

COST EFFECTIVENESS / INCREMENTAL COST

#	Plan Alternative	HU	AA Cost	AA	Cost/HU	Inc	. Cost	Inc. HU	Inc.	Cost/HU
1	No Action Plan	0.0	\$ -	\$	-	\$	-	0	\$	-
2	ED	61.7	\$ 48,670	\$	789	\$	48,670	62	\$	789
3	KD, ED	108.8	\$ 99,332	\$	913	\$	50,662	47	\$	1,076
4	KD,ED,ND	149.5	\$145,340	\$	972	\$	46,008	41	\$	1,130
5	KD,ED,SD,ND	192.0	\$193,428	\$	1,007	\$	48,088	43	\$	1,131
6	KD,ED,SD,BD,ND	233.9	\$245,038	\$	1,048	\$	51,610	42	\$	1,232
7	KD,ED,SD,BD,ND,MD	255.7	\$290,701	\$	1,137	\$	45,663	22	\$	2,095
8	CD,KD,ED,SD,BD,ND,MD	273.5	\$338,824	\$	1,239	\$	48,123	18	\$	2,704
9	CD,KD,ED,SD,GD,BD,ND,MD	286.3	\$391,146	\$	1,366	\$	52,322	13	\$	4,088
10	CD,KD,ED,SD,GD,BD,ND,AD,MD	296.7	\$459,191	\$	1,548	\$	68,045	10	\$	6,543

- No significant adverse impacts on natural or cultural resources
- No Environmental Impact Statement (EIS) required
- Finding of no significant impact (FONSI)

		-	
	Insignificant	Insignificant	Resource
	effects	effects as a	unaffected
		result of	by action
		mitigation*	
Aesthetics			\boxtimes
Air quality	\boxtimes		
Aquatic resources/wetlands	\boxtimes		
Invasive species	\boxtimes		
Fish and wildlife habitat	\boxtimes		
Threatened/Endangered species/critical habitat	\boxtimes		
Historic properties			\boxtimes
Other cultural resources			\boxtimes
Floodplains	\boxtimes		
Hazardous, toxic & radioactive waste	\boxtimes		
Hydrology	\boxtimes		
Land use	\boxtimes		
Navigation			\boxtimes
Noise levels			\boxtimes
Public infrastructure	\boxtimes		
Socio-economics	\boxtimes		
Environmental justice	\boxtimes		
Soils	\boxtimes		
Tribal trust resources	\boxtimes		
Water quality	\boxtimes		
Climate change	\boxtimes		

TENTATIVELY SELECTED PLAN

Haw thorn Woods MeHent arpentersville Dan Barkington Carol Gie eneva Dani LaSalle

MEASURES:

- Full Dam Removal
- 9 Dams

- Demolition
 - Full demolition Spillway or notch for dewatering
 - Remove and
 - recycle/dispose all materials generated from demolition

Grading

Post demolition clean up and restoration

Construction Methods

BMPs

- Temp erosion control
- Water runoff control
- Adaptive Management

Monitoring

- Habitat quality
- Sediment transport
- Fish / mussel migration
- Native fish species richness & abundance
- Water quality

BENEFITS OF DAM REMOVAL

- Ecosystem Restoration
- Increase Fish Passage
- Increase Water Quality
- Reduce Flood Risk
- Long-term Cost Savings
- Improve Life Safety

RIVER CHANNEL HYDRAULIC EFFECTS

Mheeler Pa

Stevens 6

Bennett Parl

Normal Water Levels (river surface profile)

Removal of dam will result in decrease in water levels within impoundment area (upstream dam location)

PRE & POST DAM REMOVAL EXAMPLES

North Avenue Dam - Removed 2005

PRE & POST DAM REMOVAL EXAMPLES

South Batavia Dam – Removed 2006

RIVER CHANNEL HYDRAULIC EFFECTS

U.S. ARMY

- Flood Water Levels (river surface profile)
- > Run-of-the-river dams have limited storage resulting in minor flood flow (cfs) differences both upstream and downstream of dam
- Reduced flood inundation area and flood levels upstream, insignificant difference downstream

REAL ESTATE LERRD ESTIMATE

23.53 acres including

- 7.04 acres fee simple containing dam footprints
 - All owned by state, county, or local governments
- 12.10 acres temporary work area easements (TWAE)
 - Access, staging, work, and storage
- 4.39 acres temporary road easement to maintain access

Total LERRDs estimated at \$984,000

- 90% of required real estate owned by state, county, or municipal governments
- Project area accessed from public lands when possible; disposal of spoil at appropriate recycling and/or landfill facilities
- Lands created by accretion belong to existing adjacent landowners, whose parcels run to the thread of the stream

REAL ESTATE Q&A

I own property on the river. What will it look like if these dams are removed?

Previously underwater areas will be exposed once the river returns to a more natural surface elevation. These areas are expected to be bedrock and other hard substrate, with minimal muck bottom. Landowners will be able to use newly exposed land on their property as they would the rest of their parcel(s).

I have a dock on the Fox River. What will happen to it if these dams are removed?

Personal boat docks authorized under USACE Chicago District's Shoreline Activities Regional General Permit and IDNR's Statewide Permit No. 5 will continue to be authorized. Authorized boat docks may be moved to the new OHWM so long as they continue to meet specified placement criteria.

How will this project affect my property values and taxes?

The proposed project will not change the size of any parcels but will change the physical characteristics of some parcels. The value of these changes may be subjective. Please direct inquiries regarding the assessment and taxing of your property to your local property tax assessor or other qualified tax professional.

Report available at:

https://www.lrc.usace.army.mil/Missions/Civil-Works-Projects/Public-Review-Documents/

Project webpage:

https://www.lrc.usace.army.mil/Missions/Civil-Works-Projects/Fox-River-Connectivity-Habitat-Study-IL/

Ways to comment:

- 1. During this meeting 3-minute oral comment or fill out comment form
- 2. Email: Must be received by November 6, 2023 <u>Fox-River-Study@usace.army.mil</u>
- Mail: Must be postmarked by November 6, 2023 USACE, Chicago District ATTN: Planning 231 S. LaSalle, St., Ste. 1500 Chicago, IL 60604

PUBLIC COMMENT PERIOD Recording in Progress

ConnoceRefrankingled